Marine microbial community structure assessed from combined metagenomic analysis and ribosomal amplicon deep-sequencing
نویسندگان
چکیده
The microbial taxonomic composition of the three domains of life in two coastal plankton samples was assessed by random total community metagenomic sequencing and PCR-based rDNA amplicon deep-sequencing in order to compare the resulting diversity and investigate possible limitations and complementarities of each method. The various universal primer sets, used to amplify different hypervariable rDNA regions, revealed the same major high-level taxonomic groups in Bacteria and unicellular Eukaryota, and showed a scarce Archaea apparent richness. However, significant differences were found between the different primer sets (p-value < 0.05, with the Kolmogorov–Smirnov test), regarding both operational taxonomic unit (OTU) richness and relative abundance of the major high-level taxonomic groups detected. Based on the metagenomic approach, the phylum Bacteroidetes dominated the prokaryotic community, followed by Proteobacteria, while the detected eukaryotic unicellular taxa belonged to the groups of Alveolata, Fungi, Chlorophyta, Stramenopiles and Phaeophyceae. These groups were found to carry genes typically found in microbial communities, which are linked to DNA, RNA and protein metabolism and the synthesis of nucleotides, amino acids, carbohydrates and vitamins. Although our findings suggest that the total community metagenomic approach can provide a more comprehensive picture of the planktonic microbial community structure, a number of issues associated with this approach emerged. These issues include the still relatively high cost compared to amplicon sequencing, the possible low coverage of the full marine diversity, the insufficiency of databases for other gene markers than the small subunit gene, and the bias towards bacterial sequences because of their higher abundance relative to eukaryotes in marine environments. ARTICLE HISTORY Received 17 March 2015 Accepted 7 August 2015 RESPONSIBLE EDITOR Torsten Struck
منابع مشابه
RiboFR-Seq: a novel approach to linking 16S rRNA amplicon profiles to metagenomes
16S rRNA amplicon analysis and shotgun metagenome sequencing are two main culture-independent strategies to explore the genetic landscape of various microbial communities. Recently, numerous studies have employed these two approaches together, but downstream data analyses were performed separately, which always generated incongruent or conflict signals on both taxonomic and functional classific...
متن کاملMicrobial Community Analysis with Ribosomal Gene Fragments from Shotgun Metagenomes.
Shotgun metagenomic sequencing does not depend on gene-targeted primers or PCR amplification; thus, it is not affected by primer bias or chimeras. However, searching rRNA genes from large shotgun Illumina data sets is computationally expensive, and no approach exists for unsupervised community analysis of small-subunit (SSU) rRNA gene fragments retrieved from shotgun data. We present a pipeline...
متن کاملStrengths and Limitations of 16S rRNA Gene Amplicon Sequencing in Revealing Temporal Microbial Community Dynamics
This study explored the short-term planktonic microbial community structure and resilience in Lake Lanier (GA, USA) while simultaneously evaluating the technical aspects of identifying taxa via 16S rRNA gene amplicon and metagenomic sequence data. 16S rRNA gene amplicons generated from four temporally discrete samples were sequenced with 454 GS-FLX-Ti yielding ∼40,000 rRNA gene sequences from e...
متن کاملMIPE: A metagenome-based community structure explorer and SSU primer evaluation tool
An understanding of microbial community structure is an important issue in the field of molecular ecology. The traditional molecular method involves amplification of small subunit ribosomal RNA (SSU rRNA) genes by polymerase chain reaction (PCR). However, PCR-based amplicon approaches are affected by primer bias and chimeras. With the development of high-throughput sequencing technology, unbias...
متن کاملMetagenomic and near full-length 16S rRNA sequence data in support of the phylogenetic analysis of the rumen bacterial community in steers
Amplicon sequencing utilizing next-generation platforms has significantly transformed how research is conducted, specifically microbial ecology. However, primer and sequencing platform biases can confound or change the way scientists interpret these data. The Pacific Biosciences RSII instrument may also preferentially load smaller fragments, which may also be a function of PCR product exhaustio...
متن کامل